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Abstract—Most Internet of Things (IoT) applications require
unique guarantees on various performance metrics (such as
latency, CPU availability, power fairness, etc.) from the IoT in-
frastructure. A small deterioration in these performance metrics
can cause serious violations of service level agreements. To ensure
that the deployed IoT infrastructure delivers the guarantees on
these metrics, the first step is to measure these metrics. We
present IoTm, a framework for measuring IoT performance
metrics, which include both IoT network’s quality of service
(QoS) metrics and IoT node’s resource utilization (RU) metrics.
IoTm has two key properties: 1) it is lightweight and thus
amenable for implementation on resource constrained IoT nodes;
and 2) it can perform measurements at fine-grained levels and not
just at aggregate levels. IoTm is comprised of two components,
a lightweight IoT node unit (INU), which resides in each of the
IoT nodes, and a control and query unit (CQU), which resides
in a logically centralized management server. The primary role
of INU is to record appropriate information about the desired
performance metrics in the IoT nodes. To record the information,
INU leverages a generic data structure that we propose. CQU
is responsible for identifying the metrics and the IoT nodes on
which those metrics should be monitored to achieve a desired
measurement objective. CQU also stores the copies of data
structures that the INU sends to it for long term storage. Both
INU and CQU further contain query processing engines, which
operate on the information stored in the data structures to answer
measurement queries. To demonstrate the use of our framework,
we apply it to one RU metric (number of disk accesses), and one
QoS metric (round trip latency), and evaluate its accuracy. We
also analyze the feasibility of its implementation on IoT nodes in
terms of memory requirement and computational complexity.

Index Terms—IoT; Measurements; Lightweight; Performance;

I. INTRODUCTION

The Internet of Things (IoT) enables an exchange of data
that wasn’t previously easily available such as temporal and
spatial distribution of moisture in soil [1], power consumption
of electrical appliances in smart buildings [2], and integrity of
concrete structures [3]. Each IoT application scenario requires
unique guarantees on certain performance metrics (such as
latency, loss, power consumption etc.) from the IoT infras-
tructure deployed in that scenario. For example, the values of
vibration levels in the parts of an in-flight aircraft must be
delivered to a server with as little latency as possible for real-
time monitoring. The CPU utilization of a certain process on
an IoT node must not exceed a certain value to ensure CPU
availability for other, perhaps more critical, processes. A small

deterioration in these performance metrics can cause violations
of service level agreements (SLAs), and result in significant
revenue and functional losses. To ensure that the deployed
IoT architecture delivers the guarantees on these performance
metrics and that their values lie in a desired range, the first
step is to measure these metrics. IoT system and network
administrators need the measurements of these performance
metrics to reactively perform troubleshooting tasks such as
detecting and localizing offending flows that are responsible
for causing delay bursts and throughput deterioration and
identifying processes that are hogging an IoT node’s CPU.
They also need these measurements to proactively locate and
update any potential future bottlenecks.

In this paper, our objective is to take the first step towards
developing a framework for measuring IoT performance met-
rics, which include both IoT network’s Quality of Service
(QoS) metrics such as latency, loss, and throughput and
IoT nodes’ Resource Utilization (RU) metrics such as power
consumption, disk accesses and utilization, radio-on time etc.
This framework must have two key properties. First, it should
be lightweight for IoT nodes, i.e., it should require very small
amount of memory and compute resources on IoT nodes when
performing measurements, and should keep all the complexity
on the cloud side. This is important because most IoT nodes
are resource constrained in terms of either the available power,
or the compute and memory resources, or even both. Second,
it should be able to perform fine-grained measurements, i.e., it
should not only be able to obtain the aggregate measurements
of the desired performance metric (such as the aggregate
utilization of CPU by all processes on an IoT node or the
average latency of all the packets going from an IoT node
to a cloud platform), but it should also be able to obtain
per-instance measurements of that metric (such as the CPU
utilization of each process running on the IoT node, and the
average latency of each flow going from the IoT node to the
cloud platform, respectively). In the rest of this paper, we
will use the term instance to represent an individual entity
for which the desired performance metric exists. Examples of
instance include a network flow or a CPU process. The desired
performance metrics for these instances can be flow size and
CPU utilization, respectively. Fine-grained measurements are
important because even if the aggregate value of a performance
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metric appears normal, its value for a particular instance may
be wildly abnormal. For example, IoT gateways can experience
microbursts (simultaneous short bursts of data from a large
subset of IoT nodes) that cause packet losses for some flows,
even when the average traffic at that gateway across all flows
over a period of time is well within the limits of the gateway
capacity. While solutions to such problems have been proposed
in the past for conventional networks and for data centers,
and it may even be possible to adapt those solutions for
IoT architectures, it is still imperative to have a measurement
scheme in place to rapidly detect and localize such problems.

While measuring performance metrics in IoT is a new and
largely an unexplored area, a significant amount of work has
been done on measuring performance metrics in conventional
networks and data centers, which reiterates the importance of
measuring network performance metrics in the emerging IoT
networks. Although several schemes have been proposed to
measure performance metrics in conventional networks and
systems, they are not suitable for IoT architectures for two
main reasons. First, the majority of the existing schemes are
not passive, i.e., they perform active operations, such as using
active probes, to obtain the measurements [4]–[11]. While
active schemes work well with conventional network devices,
they are problematic for IoT nodes because they interfere with
the regular operations of the IoT nodes, and the limited amount
of resources on such nodes makes it hard for the nodes to
perform such auxiliary active operations while ensuring that
their regular operations proceed unaffected. Second, the exist-
ing passive measurement schemes for conventional networks
and systems require a significant amount of computational
and memory resources. For example, Moshref et al. leveraged
the abundance of computational resources in the servers in
data centers to develop a measurement framework to detect
events of interest [12]. While computational resources are
usually not a problem on conventional servers, they are not
as abundant on IoT nodes. Consequently, it is not possible for
IoT nodes to implement conventional measurement methods
without impeding their regular operations. Thus, there is a
need to develop a framework that is designed keeping IoT
architectures in mind.

In this paper, we present IoTm, a lightweight framework for
fine-grained measurement of IoT performance metrics, which
include both QoS as well as RU metrics. It is comprised of two
components, an IoT node unit (INU), which resides in each
IoT node, and a control and query unit (CQU), which resides
in a logically centralized management server. The management
server itself can either be deployed locally or in the cloud.

INU is comprised of two sub-components: 1) a data struc-
ture in which the IoT node stores appropriate information
about the desired performance metric; and 2) a local query
processing engine, which receives queries from CQU (we will
discus CQU shortly) and answers them using the information
stored in the data structure. The INU sends the data structure
to the CQU either periodically or when the data structure
gets full and the CQU stores it for analysis and long-term
storage. The data structure has three properties that make

it ideal for implementation in IoT nodes. First, it enables
both fine-grained and aggregate measurements of a variety of
performance metrics, including, but not limited to, latency,
disk accesses, CPU utilization, and several others. Second, it
is computationally very lightweight and requires only a single
hash computation and no more than two memory updates per
insertion. Third, it has a very small memory footprint.

CQU is comprised of three sub-components: 1) a control
unit, which, based on the high level measurement objective,
is responsible for selecting the IoT nodes on which the
measurements should be taken, the performance metrics that
should be measured on those IoT nodes, and the granularity
at which those performance metrics should be measured; 2)
a storage, where CQU stores the data structures sent by the
INUs; and 3) a global query processing engine, which answers
user’s queries from the stored data structures. Next, we give an
example to demonstrate the use of these three sub-components.

Consider a scenario where an IoT infrastructure provider
implements a large number of traffic monitoring sensors that
measure and provide the extent of congestion on all roads
and intersections throughout the city. Suppose an IoT service
controls the timings for traffic lights at all intersections in that
city and uses an algorithm to calculate the optimal durations
for the red, yellow, and green lights based on the state of
congestion on different roads and intersections in the city.
Lets assume that the algorithm that this IoT service uses
requires that the latest state of congestion at city intersections
be delivered to it within 100ms, while the state of congestion
at portions of roads farther away from the intersections can
take longer to be delivered. This requirement gives rise to the
need for measuring latencies of packets sent by traffic sensors
at city intersection to ensure that they never experience delay
>100ms . With this high level latency measurement objective
in view, the control unit instructs the INUs in the traffic sensors
at the intersections (and not at the portions of roads away from
the intersections) to start recording information in their data
structures that can later be used for measuring latencies. The
query processing engine in CQU can later be used to estimate
and analyze latencies experienced by packets at any desired
time from the data structures sent by INUs to CQU and stored
in CQU’s storage to ensure that the latencies experienced
by these packets were never over 100ms, and if they were,
appropriate actions can be taken to keep them under 100ms.

From the discussion above, we see that our measurement
framework has 5 sub-components: the data structure and
the local query processing engine in INU, and the control
unit, storage, and global query processing engine in CQU.
In this paper, we focus on the design of 3 of these 5 sub-
components: the data structure and the local query processing
engine in INU, and the global query processing engine in
CQU. For control unit, we assume that a network administrator
configures it manually based on the high level measurement
objectives. Automating the operations of control unit will be
the part of our future work. For the storage, we assume that
an appropriate database is in place that can store the data
structures sent by INUs to the CQU.
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Key Contributions: In this paper, we make three key con-
tributions: 1) we present, IoTm, a lightweight framework for
fine-grained measurement of IoT performance metrics, which
include both QoS and RU metrics; 2), we present a generic
data structure that enables INUs to store information about IoT
performance metrics in compute and memory efficient way; 3)
we demonstrate the application of our framework using two
arbitrarily chosen IoT performance metrics (disk accesses and
round trip latencies) as examples, and present the accuracy of
our framework through extensive experimental evaluations.

II. DATA STRUCTURE

In this section, we present our data structure that can
efficiently store measurements for a variety of different per-
formance metrics. We first describe how the INU on any given
IoT node inserts measurements into this data structure. After
that, we discuss how INU sends it to CQU for long term
storage and analysis. Last, we present its complexity analysis
and theoretical modeling. To describe how the INU inserts
measurements into this data structures, we use an arbitrary
metric M that has to be measured for one or more distinct
instances. Let we use I to represent an arbitrary instance.
As an example, this data structure can be used to store the
packet count (i.e., the metric M) of each network flow (i.e., the
instance I) that the IoT node generates. As another example,
this data structure can also be used to store the number of disk
accesses (i.e., the metric M) of each process (i.e., the instance
I) running in a given IoT node.

A. Construction

Our data structure is comprised of an array B of n buckets,
where each bucket B[i] (1 ≤ i ≤ n) has b bits with initial value
0. The data structure requires instances to have unique IDs.
An ID can be any information that distinguishes one instance
from the others. For example, if the instance is a network flow,
its ID can be the standard five tuple (i.e., source IP, destination
IP, source port, destination port, and protocol type). Similarly,
if the instance is a process running in the IoT node, its ID
can be the unique process ID assigned to it by the OS. For
any arbitrary instance with ID I , our data structure maps it to
a bucket subarray, which is a unique subset of the buckets in
the bucket array. Each bucket subarray comprises m buckets,
where m << n. To make the mapping unique and memoryless
(i.e., without requiring any lookup or hash tables), our data
structure maps each instance to a random subarray such that
the probability of two different instances being mapped to the
same subarray is practically negligible. A bucket may belong
to multiple bucket subarrays. Figure 1 shows an example
bucket array and its four bucket subarrays for four instances
I1 through I4. We observe from this figure that buckets 5 and
7 belong to multiple bucket subarrays.

To insert each measurement of the desired metric M of
an instance I , the INU first randomly selects one bucket
in the bucket subarray corresponding to the instance I , and
then adds the measured value of the metric in that bucket.
Formally, to add a measurement for instance I , INU chooses

Fig. 1. Illustration of bucket array and bucket subarrays

a random number j from a uniform distribution in the range
[1,m], calculates the hash function H(I, j) whose output
is uniformly distributed in the range [1, n], and increments
the bucket B[H(I, j)] by the value of the measurement.
Thus, the sum of all the measurements of the metric M

of instance I will be uniformly distributed across m buck-
ets: B[H(I, 1)],B[H(I, 2)], · · · ,B[H(I,m)]. These m buckets
constitute the bucket subarray of the instance I , which is
denoted by BI where BI [j] = B[H(I, j)] for j ∈ [1,m].

Note that while storing the sum of all the measurements
is appropriate in the case of some metrics, such as the total
number of memory accesses, it is not appropriate for some
other metrics, such as CPU utilization. The appropriate mea-
sures for such metrics are the average value of those metrics.
To calculate the average value of such a metric for any given
instance I , in addition to the sum of all the measurements
for I , the query processing engine will also need to know the
number of times the measurements for I were inserted to I’s
bucket subarray. For this, the INU maintains another array C
containing the same number of buckets as the array B (i.e.,
n) with initial values of 0, and the same number of buckets
per subarray (i.e., m). Every time INU adds a measurement to
some bucket B[i], it also increments the corresponding bucket
C[i] by 1. This way, the bucket array B stores the sum of the
measurements of the desired metric for each instance and the
bucket array C stores the number of times the measurements
of the desired metric for each instance were inserted in the
bucket array B. In Section III, we will describe how a query
processing engine applies appropriate statistical operations to
extract the average and/or the sum of the measurements of the
metric for any given instance I from the bucket array.

B. Management

The INU on each IoT node sends the data structure, i.e.,
the bucket array B (and the bucket array C, if being used) to
the CQU for storage either when any of the bucket becomes
full or after a certain amount of time has passed since the
bucket array B was initialized to 0. We call the bucket array
B that is sent to the CQU a bucket epoch B. For each bucket
epoch, INU also sends time stamps of the first and the last
recorded measurement, which the CQU uses to distinguish
between several bucket epochs sent by the INU on any given
node. After sending the data structure, INU resets all buckets
to zero and starts recording measurements again.

Note that instead of using the data structure that we have
proposed, INU may be able to store the measurements of
the desired metric for each instance by simply maintaining
a separate counter for each instance. When the number of

14



instances is small, this approach may even require less mem-
ory. However, this approach has 3 limitations. First, it does
not scale: as the number of instances increase, the amount of
lookup state that the IoT node needs to maintain increases
to keep track of which counters are associated with which
instances. This may not always be possible for resource
constrained IoT nodes. In comparison, the data structure in
our IoTm framework does not require the INU to maintain
any lookup state, rather maps the instances to appropriate
counters using our memoryless hashing approach. Second, as
the number of instances increase, separate counters for each
instance consume a lot more memory compared to our data
structure, as we will show in Section IV. Third, it is often
not possible to anticipate the number of measurements of any
given instance in advance. Thus, allocating the same number of
bits to counters for each instance can result in overflow in some
counters and under utilization in others. In comparison, in our
data structure, each bucket is shared among many instances
and each instance is mapped to many buckets, which mitigates
the problems of under utilization and overflow, respectively.

C. Analysis

1) Complexity: When inserting information about a mea-
surement in bucket array, the IoT node has to perform only one
hash computation (to identify the bucket) and up to only two
memory updates (one to add the value of the measurement to
the bucket array B and another to keep the count of the number
of measurements in bucket array C, if used). Due to such min-
imal computation and memory access requirements, our data
structure is very lightweight and amenable for implementation
in IoT nodes. We will study the memory footprint of our data
structure in Section IV when we use the IoTm framework to
measure various IoT performance metrics.

2) Modeling: Next, we derive the expression for the prob-
ability distribution of the values of the buckets in the bucket
arrays, which the query processing engine will use to estimate
the average and/or the sum of the measurements of the metric
stored in the bucket arrays for any given instance. Let BI be
the random variable representing the amount contributed by in-
stance I to a bucket BI [j] (1 ≤ j ≤ m) in its bucket subarray.
Let sI be the sum of all the measurements of instance I that
contributed to the current bucket epoch B. As each bucket in
the bucket subarray of I has a probability 1

m
of being selected

for insertion of any measurement for the instance I , BI follows
a binomial distribution, i.e., BI ∼ Binom(sI , 1/m). Thus, the
amount contributed by an instance to each bucket in its bucket
subarray follows a binomial distribution.

The amount contributed by all instances other than the
instance I to each bucket in the bucket subarray of instance
I also follows a binomial distribution. Let Br be the random
variable representing the amount contributed by measurements
of all instances other than the instance I to bucket BI [j].
The probability that a measurement of an instance Ī �= I
contributes an amount to bucket BI [j] is the product of the
probability that the hash function H maps the measurement to
BI [j] given that BI [j] ∈ BĪ , which is 1/m, and the probability

that bucket BI [j] is in the bucket subarray of Ī , which is
denoted by P{BI [j] ∈ BĪ} and calculated as follows:

P{BI [j] ∈ BĪ} = 1−

{(
m

0

)(
1

n

)0(
1−

1

n

)m
}

= 1−

{
1−

m

n
+

(m)(m− 1)

n2 × 2!
− . . .

}
≈
m

n
(1)

Thus, the probability that a measurement for an instance
Ī �= I contributes an amount to bucket BI [j] is 1

m
× m

n
= 1

n
.

Representing the sum of all the amounts contributed by the
measurements of all instances in the given bucket epoch by s,
the binomial distribution of Br is Br ∼ Binom(s− sI , 1/n).

Next, we calculate the probability distribution of any given
bucket in the bucket array. As B = BI + Br, and BI and
Br are almost independent when sI << s, the probability
distribution function of B is calculated as follows.

P {B = b} ≈
b∑

bI=0

{
P {BI = bI} × P {Br = b− bI}

}

Note that in practice, sI is indeed much smaller than s
because sI is the amount added by a single instance in
the bucket epoch while s is the amount added by all the
instances. Replacing P {BI = bI} and P {Br = b− bI} with
their respective binomial distribution expressions, we get

P {B = b} ≈
b∑

bI=0

{(
sI
bI

)(
1

m

)bI (
1−

1

m

)sI−bI

×

(
s− sI
b− bI

)(
1

n

)b−bI (
1−

1

n

)s−sI−b+bI
}

(2)

Following the same steps, we can obtain the expression
for the probability distribution of the values of the buckets
in the bucket array C. Let tI represent the number of times
the measurements of instance I were inserted in B, and t
represent the total number of insertions into the bucket array
B. Let C be the random variable representing the value of any
arbitrary bucket CI [j] (1 ≤ j ≤ m) in the bucket subarray.
The expression for the probability distribution of the values of
the buckets in the bucket array C turns out to be the following.

P {C = c} ≈

c∑
cI=0

{(
tI
cI

)(
1

m

)cI (
1−

1

m

)tI−cI

×

(
t− tI
c− cI

)(
1

n

)c−cI (
1−

1

n

)t−tI−c+cI
}

(3)

III. QUERY PROCESSING ENGINE

The control unit issues queries to the query processing
engines. The query can be provided manually by the admin-
istrator through the control unit or the control unit can issue
them automatically to measure these performance metrics to
ensure that the IoT system is delivering on any required SLAs.
A query comprises three attributes: 1) the instance ID, 2) the
starting and ending times of the period during which the value
of the desired metric is required, 3) whether the response to
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the query should be the sum or the average of the values of
the desired metric. Based on the starting and ending times, the
control unit first determines whether the bucket epochs whose
time frames overlap with these starting and ending times are
all stored in the storage of CQU or the time frame also covers
the data structure currently under construction by INU in an
IoT node. Next, the control unit instructs the appropriate query
processing engines (i.e., either in CQU, or INU, or both) to
estimate the sum of the value of the desired metric from each
identified bucket epoch B, and send them back to the control
unit. Control unit adds these values estimated from the bucket
epochs to obtain the overall sum for the desired instance. If
the average value of the metric is desired, the query processing
engine further extracts the number of times the measurement
of the desired metric is inserted into bucket epochs B from all
corresponding bucket epochs C, and sends them to the control
unit. The control unit adds them to get an estimate of the total
number of times the measurements of the desired metric were
inserted into all bucket epochs and divides the sum from all
bucket epochs with it to get the average value of the metric
for the desired instance.

Next, we describe how the query processing engine extracts
the value of the sum from any given bucket epoch B. The
method to extract the value of the number of times a mea-
surement is inserted from any given bucket epoch C is exactly
the same. Furthermore, both local and global query processing
engines use the exact same method to extract the values of the
sum and the number of times the measurements are inserted
from bucket epochs B and C, respectively. Our objective here
is to estimate the value of sI for any given instance with
ID I from any given bucket epoch B. Let B̃

I
[j] denote the

observed value of bucket BI [j] and let s̃I denote the estimate
that the query processing engine returns for the value of sI .
The probability or likelihood of getting the observed value
B̃
I
[j] of a bucket BI [j] in the bucket subarray of instance I is

given by Eq. (2). Thus, the likelihood of getting the observed
values of all buckets in the bucket subarray of the flow is given
by the following equation.

L =

m∏
j=1

P
{
B = B̃

I
[j]

}

=

m∏
j=1

⎧⎨
⎩

B̃I
[j]∑

bI=0

[(
sI
bI

)(
1

m

)bI (
1−

1

m

)sI−bI

×

(
s− sI

B̃
I
[j]− bI

)(
1

n

)B̃I
[j]−bI (

1−
1

n

)s−sI−B̃I
[j]+bI

⎤
⎦
⎫⎬
⎭ (4)

Note that the right hand side of the equation above has only
one unknown, i.e., sI . We use the maximum likelihood esti-
mation method to estimate the value of sI using this equation.
Formally, the estimated value s̃I of the sum of measurements
of the instance I is given by s̃I = argmaxsI {L}. Taking
natural log of L, differentiating ln{L} with respect to sI , and

equating
d

dsI
ln {L} to 0, we get

m∑
j=1

d

dsI
ln

⎧⎨
⎩

B̃I
[j]∑

bI=0

[(
sI
bI

)(
1

m

)bI (
1−

1

m

)sI−bI

×

(
s− sI

B̃
I
[j]− bI

)(
1

n

)B̃I
[j]−bI(

1−
1

n

)s−sI−B̃I
[j]+bI

⎤
⎦
⎫⎬
⎭ = 0

(5)

Let

X[j] =

(
1

m

)bI(
1−

1

m

)−bI( 1

n

)B̃I
[j]−bI(

1−
1

n

)s−B̃I
[j]+bI

Y[j] =

(
sI
bI

)(
s− sI

B̃
I
[j]− bI

)(
1−

1

m

)sI (
1−

1

n

)−sI

Thus, Eq. (5) becomes

m∑
j=1

d

dsI
ln

⎧⎨
⎩

B̃I
[j]∑

bI=0

[X[j]× Y[j]]

⎫⎬
⎭ = 0

As X[j] is not a function of sI , the equation above becomes

m∑
j=1

⎧⎪⎨
⎪⎩

∑B̃I
[j]

bI=0

{
X[j]× d

dsI
Y[j]

}
∑B̃I

[j]
bI=0 {X[j]× Y[j]}

⎫⎪⎬
⎪⎭ = 0 (6)

To calculate d
dsI

Y[j], we use the following identity.

d

dw

(
v

w

)
=

(
v

w

)(
ψ(0) {v − w + 1} − ψ(0) {w + 1}

)
Using this identity and standard algebraic operations, we get
the following equation for d

dsI
Y[j]. Let Z[j] = d

dsI
Y[j]. Thus,

Z[j] = Y[j]

[
log

{
1−

1

m

}
− log

{
1−

1

n

}

−ψ(0) {1 + s− sI}+ ψ(0)
{
1 + bI − B̃

I
[j] + s− sI

}
+ψ(0) {1 + sI} − ψ

(0) {1− bI + sI}

]
Thus, the estimated value s̃I of sI , i.e., the sum of measure-
ments of instance I , in the given bucket epoch B is given by
the numerical solution of the following equation:

m∑
j=1

⎧⎨
⎩

∑B̃I
[j]

bI=0 {X[j]× Z[j]}∑B̃I
[j]

bI=0 {X[j]× Y[j]}

⎫⎬
⎭ = 0 (7)

The estimated value t̃I of tI , i.e., the number of times the
measurements are inserted in the given bucket epoch B, is
also given by the numerical solution of Eq. (7) after replacing
B̃
I
[j], bI , s, and sI with C̃

I
[j], cI , t, and tI , respectively.

Discussion: As described in Section II-A, the INU
spreads the measurements of any instance into m buckets.
By distributing the measurements into multiple buckets and
by keeping m << n, INU significantly reduces the depen-
dence of the accuracy of estimates on the distribution of the
measurements. This is because when m << n, no two flows
will have a large number of common buckets in their bucket
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subarrays. Thus, even if one instance with large value shares a
bucket with another instance with small value, the remaining
m − 1 buckets of the instance with small value will not be
shared with the same large instance. Consequently, the net
estimate from the m buckets does not have a large error. Our
proposed framework finds applications in the majority of IoT
deployment scenarios. For example, it can be deployed to keep
track of the amount of time each node transmits for subsequent
analysis of the fairness in transmission workload of low-power
nodes. As another example, it can be used to monitor the
latency experienced by the packets of individual IoT nodes,
which is a critical metric in time-sensitive IoT deployments
such as in autonomous machines on factory floors.

IV. APPLICATIONS AND EVALUATION

In this section, we demonstrate the use of our IoTm frame-
work by applying it to store and estimate one RU metric,
namely the number of disk input/output (IO) operations and
one QoS metric, namely round trip latency. Note that our
framework is not limited to these two metrics, and can be used
to store and estimate several other IoT metrics, such as CPU
utilization, throughput, packet loss, memory consumption,
etc. For the number of disk IO operations, the appropriate
measurement is the total number of IO operations per process,
while for latency, the appropriate measurement is the average
value per flow. Thus, the two IoT performance metrics that
we have chosen cover both types of metrics: one that does not
require the use of the supplementary bucket array C and one
that does. In the rest of this section, for each of the two metrics,
we first describe how the INU inserts the measurements of that
metric into the data structure. After that we describe the real
world traces that we used to evaluate the performance of our
framework for that metric. Last, we present the results on the
accuracy of the estimates of that metric provided by the query
processing engine, and on the physical memory required on
the IoT nodes to maintain the data structure.

A. Disk IO Operations per Process

1) Method: When the control unit instructs INU on any
IoT node to start recording disk IOs of processes, the INU
initializes the bucket array B comprising n buckets. As we
are interested in the total number of disk IOs per process and
not the average, the INU does not initialize the bucket array C.
Based on the requirements, the control unit can even specify
exactly for which processes the disk IOs should be recorded.

Every time a process on the given IoT node performs a disk
IO operation, the INU on that node selects a random number j
from a uniform distribution in the range [1,m], appends it with
the ID p of the process, calculates the hash function H(p, j)
whose output is uniformly distributed in the range [1, n], and
increments the bucket B[H(p, j)] by one. To estimate the
number of disk IOs of any given process with ID p over a
desired period of time, the control unit first identifies all bucket
epochs whose time frames overlap with that desired period of
time. Depending on where the identified bucket epochs are
currently stored, the control unit asks the query processing

engine either in CQU, or in INU, or in both, to estimate the
number of disk IOs from their corresponding bucket epochs.
The query processing engine(s) use Eq. (7) to estimate the
number of disk IOs for that process from the identified bucket
epochs, and send the estimates back to the control unit. The
control unit adds the estimate from each bucket epoch to get
the final estimate of the total number of disk IOs of the process
p over the desired period of time.

2) Traces: To evaluate the accuracy of our framework in es-
timating the number of disk IOs per process, we collected disk
IO traces from a Raspberry Pi executing MQTT protocol (the
commonly used application layer protocol for IoT [13]) and
sending/receiving packets from an MQTT broker. Our trace
file contains log entries, where each log entry corresponds to
a disk IO operation and comprises the time stamp of that disk
IO operation as well as the ID of the process that performed
that disk IO. We captured disk IOs for 10 processes for a
duration of 10 minutes.

3) Evaluation: Next, we first study the accuracy of the
estimates using fixed values of the two parameters n (i.e., the
number of buckets in the bucket array) and m (i.e., the number
of buckets in each bucket subarray). After that, we study the
effect of the change in the values of these two parameters
on the accuracy of our framework. After that, we study the
effect of the number of bucket epochs across which queries
are spread, i.e., the number of bucket epochs from which the
query processing engine(s) have to estimate values in order
for the control unit to be able to answer the query. Last, we
discuss the memory requirements of our data structure in an
IoT node. In all our experiments, we used b (i.e., the size of
each bucket) as 16 bits.

To study the accuracy of IoTm, we implemented the INU
emulator in Matlab that traverses the log file containing the
traces and inserts the disk IO counts to the data structure using
the desired values of n, m, and b. More specifically, the INU
emulator simulates the time duration of 10 minutes. Every
time the simulator time matches the time stamp of a log entry,
the INU emulator increments a bucket in the bucket subarray
corresponding to the process ID in that log entry, as described
in Section IV-A1. The INU transfers the data structure to CQU
(also implemented in Matlab) every t minutes. This way, from
the simulation with t minute wide bucket epochs, the CQU
emulator receives 10/t bucket epochs. In different simulations,
we used one of the following three values for t: {1, 5, 10}.

The motivation behind performing simulations with differ-
ent durations of bucket epochs (i.e., using different values
of t in different simulations) is twofold. First, it enables
us to evaluate the accuracy of IoTm for queries that span
a single bucket epoch as well as those that span multiple
bucket epochs. Second, in evaluating the accuracy, the query
processing engine is exposed to several ranges of the number
of disk IOs per process. Figure 2 shows boxplot of the number
of disk IOs of the 10 processes stored in each bucket epoch
from three simulations corresponding to three values of t, i.e.,
t = 1, 5, and 10. For this figure, n = 20 and m = 5. Each
boxplot is made from 10 values of the number of disk IOs,
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one for each process. We observe from this figure that indeed
the bucket epochs contain a variety of ranges of the number
of disk IOs per process, with the smallest spans for 1-minute
bucket epochs and the largest span for the 10-minute epoch.

Fig. 2. The number of disk IOs stored in bucket epochs.

Accuracy: To study the overall accuracy, we used n = 20
and m = 5, and performed three simulations using t = 1, 5,
and 10 minutes. From the bucket epochs resulting from each
simulation, we queried the total number of disk IOs performed
by each of the 10 processes throughout the duration of 10
minutes. Note that for the bucket epochs resulting from sim-
ulation using t = 1, each query requires the query processing
engine to estimate a value from each of the 10 bucket epochs.
Similarly, for the bucket epochs resulting from simulation
using t = 5 and 10, each query requires the query processing
engine to estimate a value from two and one bucket epochs,
respectively. Figure 3 shows a scatter plot of the actual number
of disk IOs vs the estimated number of disk IOs from the
bucket epochs resulting from t = 1 minute. Due to space
limitation, we do not show the scatter plots of the estimates
obtained using the bucket epochs resulting from t = 5 and 10
minutes, rather only describe the observations.
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Fig. 3. Actual # of disk IOs vs. estimated # of disk IOs

We observe from this figure that all estimates always lie
within the±5% error lines, i.e., our IoTm framework estimated
the number of disk IOs for each process with less than 5%
error. The estimates from the t = 5 and 10 minute wide bucket
epochs have smaller error compared to the estimates from
t = 1 minute wide bucket epochs because for t = 1 minute
wide bucket epochs, the query processing engine has to obtain
10 estimates from 10 bucket epochs. As each estimate has
error, the more the number of estimates involved in answering
a query, the higher the error. We make two conclusions from
the discussion above. First, IoTm accurately estimates the
values of the number of disk IOs with less than 5% error.
Second, increasing the bucket epoch duration reduces the error.
However, note that the increase in bucket epoch duration may
not always be feasible because larger duration implies that

more information will be inserted into the bucket epochs, and
thus, the size b of each bucket will need to be increased, which
may not always be feasible for resource constrained IoT nodes.

Effect of the Number of Buckets in Array: To study
the effect of n on the accuracy of the IoTm framework, we
performed 7 sets of the same three simulations described
above (i.e., using t = 1, 5, and 10), where each set of
simulations used a unique value of n. For all these simulations,
we kept m fixed at 5. From the bucket epochs resulting
from each simulation, we queried the total number of disk
IOs performed by each of the 10 processes throughout the
duration of 10 minutes. Figure 4 plots the average relative
error in the estimates across the 10 processes for different
values of n and different bucket epoch durations. We de-
fine relative error in an estimate as (|actual value −
estimated value|/actual value). We observe from
this figure that as n increases, the relative error decreases.
This is intuitive because when the value of n is large, the
information of different processes is spread over more diverse
sets of buckets, and each bucket is storing information from
fewer number of processes. In other words, there is less noise
in any given bucket when seen from the perspective of any
process whose subarray the given bucket is in. We conclude
from this discussion that the larger the n, the lower the error.
However, very large values of n may not be possible for
resource constrained IoT nodes.

Effect of the Number of Buckets in Subarray: To study
the effect of m on the accuracy of IoTm, we performed 8
sets of the same three simulations (i.e., using t = 1, 5, and
10), where each set of simulation used a unique value of m.
For all these simulations, we kept n fixed at 20. Figure 5
plots the average relative error in the estimates across the 10
processes for different values of m and different bucket epoch
durations. We observe from this figure that the relative error
is a convex function of m. The initial decrease in the relative
error with the increase in m is because the increase in the
number of buckets in a subarray increases the observations
from which an estimate is obtained. It is a well-known
result in estimation theory that the increase in the number of
observations decreases the variance in the error of estimates
[14]. The subsequent increase in the relative error is because as
m increases, more and more processes start sharing the same
bucket, which increases the amount of noise in each bucket
and thus increases the error in estimates. We conclude from
this discussion that given the values of other parameters, such
as n and b, an optimal value of m exists that minimizes the
error. In our future work, we plan to theoretically derive the
expression to calculate this optimal value of m.

Effect of the Number of Bucket Epochs: To study the
effect of the number of bucket epochs across which the query
spans on the accuracy of our framework, we performed a
simulation using t = 1, n = 20, and m = 5. This simulation
resulted in ten 1-minute wide bucket epochs. We executed
10 sets of queries, where each set comprised of 10 queries
corresponding to the 10 processes to estimate their number
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Fig. 4. Effect of n on average relative
error (m = 5)
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Fig. 7. Memory required as a function
of the number of buckets

of disk IOs. Each query for any given process in the ith set
of queries (1 ≤ i ≤ 10) was to estimate the number of disk
IOs performed by that process in the first i minutes of the 10
minute trace. Thus each query in the ith set spans i bucket
epochs. Figure 6 plots the average relative error across all
queries in each set of queries. We observe from this figure
that as the number of bucket epochs across which the query
spans increases, the average relative error increases (although
only slightly). This concurs with our earlier observation that
using a lager duration for each bucket epoch is advisable as it
decreases the number of bucket epochs from which any given
estimate is obtained. However, as also discussed earlier, the
larger duration may not always be feasible due to the need for
increasing the size of each bucket and the limited resources
on IoT nodes. The system administrator should first determine
how much memory is available for data structure on the IoT
nodes and how frequently the measurements will be taken.
Based on this, he/she should decide the appropriate size of
each bucket and the duration of bucket epochs.

Memory: Figure 7 plots the memory required by our data
structure corresponding to the different values of n in Figure 4.
Each point in Figure 7 is obtained by multiplying n with b =
16 bits. We observe from this figure that even for the highest
accuracy configuration (i.e., when n = 40), our data structure
requires just 80 bytes of memory. Most IoT nodes, such as
Raspberry Pi and Photon IO have much higher amounts of
RAM available compared to 80 bytes. This shows that our
proposed INU can easily be implemented on IoT nodes.

B. Round Trip Latency per Flow

Next, we describe how the IoTm framework can estimate
the average round trip times (RTT) experienced by the packets
in any flow. To measure RTT for any packet, we need two time
stamps: one when the packet leaves the IoT node and another
when its ACK arrives back. Consider an arbitrary flow with
ID f that has l packets. The ID of a flow can be any flow
identifier, such as the standard five tuple. Let Si represent the
time stamp when the ith packet of this flow is sent and let
Ri represent the time stamp when the ACK of this ith packet
arrives back. The average RTT of the packets in a flow f is:

RTTf =
(R1−S1)+ . . .+(Rl−Sl)

l
=

1

l

(
l∑

i=1

Ri−

l∑
i=1

Si

)

This equation shows that if we simply add the time stamp of
each ACK in our data structure and subtract the time stamp

of each sent packet from the data structure, then we will
be storing the sum of RTT values of all packets in the data
structure. This method, however, will work only if there are
no packet losses. To demonstrate the use of our framework
for measuring average RTTs per flow, we assume no packet
losses. Handling packet losses is straighforward: maintain two
bucket arrays for separately storing time stamps of sent and
received packet and another two bucket arrays to separately
keep a count of the number of sent and received packets.

1) Method: When the control unit instructs INU on any IoT
node to start recording RTT values of flows, the INU initializes
the bucket arrays B and C, each comprising n buckets. To
make sure that the time stamp of the ACK of a packet is
added to the same bucket from which the time stamp of its
transmission time was subtracted, every time a packet of a flow
ID f is transmitted or an ACK of a packet of that flow ID f
arrives, instead of randomly choosing a number j in the range
[1,m] and appending it to flow ID before calculating the hash
function, INU applies the modulo m operation on the packet
sequence number, adds 1 to it, and appends that to the flow
ID. It then calculates the hash function H(f, Seq#%m + 1)
whose output is uniformly distributed in the range [1, n], and
adds the time stamp to the bucket B[H(f, Seq#%m + 1)] if
processing a received ACK or subtracts the time stamp from
the bucket B[H(f, Seq#%m+1)] if processing a transmitted
packet. For each sent packet of any given flow with ID f , it
also increments the corresponding bucket C[H(f, Seq#%m+
1)] by one to keep count of the number of packets of that flow.

To estimate the average RTT experienced by the packets of
any given flow with ID f over a desired period of time, the
control unit first identifies all bucket epochs whose time frames
overlap with that desired period of time. Next, it asks the query
processing engine(s) to estimate the sum of RTTs from each
identified bucket epoch B and the count of the number of
transmitted packets from each corresponding bucket epoch C.
The query processing engine(s) use Eq. (7) to obtain these
estimates and send them to the control unit. The control unit
then divides the sum of estimates from all B bucket epochs
with the sum of estimates from all C bucket epochs to estimate
the average RTT experienced by the packets of the flow f .

2) Traces: To evaluate the accuracy of our framework,
we collected traces from a Raspberry Pi executing MQTT
protocol and sending/receiving packets from an MQTT broker.
The Raspberry Pi ran 50 different processes, each having a
unique persistent TCP connection with the MQTT broker. This
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resulted in 50 flows with distinct IDs. The flow ID is the
standard 5 tuple. Each process sent 100 byte messages to the
MQTT server on up to 10 different topics. Furthermore, each
process sent messages at different rates: the process with flow
ID fi (1 ≤ i ≤ 50) carried an average of i messages per
second with exponentially distributed inter-arrival times. We
used tcpdump to log all departing and arriving traffic at the
Raspberry Pi for a duration of 10 minutes. The pcap files
resulting from the tcpdump contain the flow ID for each
packet as well as the TCP sequence numbers, which the INU
uses to decide the bucket in which the time stamp of an ACK
should be added and from which the time stamp of a sent
packet should be subtracted. Figures 8 and 9 plot the CDFs of
the packet counts of the 50 flows and the RTTs experienced
by the packets across these 50 flows, respectively. We observe
from these figures that we have flows ranging from very few
packets to a very large number of packets and latencies ranging
from a few milliseconds up to about 50 milliseconds.
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3) Evaluation: In all our experiments, we used b = 32 bits
because time stamp values at the granularity of milliseconds
require larger memory compared to the number of disk IO
values. Similar to Sections IV-A3, we used our INU emulator,
which traverses the pcap file. Every time the simulation time
matches the time stamp of a packet in the pcap file, the INU
emulator increments a bucket in the C bucket subarray corre-
sponding to the flow ID of that packet, and adds (subtracts)
the time stamp of the received ACK (sent packet) from the
corresponding bucket in the B bucket subarray.

Accuracy: To study the accuracy, we used n = 20 and
m = 5, and performed three simulations using t = 1, 5,
and 10 minutes. From the bucket epochs resulting from each
simulation, we queried the average RTTs experienced by each
of the 50 flows. Figures 10(a), 10(b), and 10(c) show scatter
plots of the actual average RTTs of each flow vs. the estimated
average RTTs from the bucket epochs resulting from t = 1, 5,
and 10 minutes, respectively. We observe from these figures
that the estimates always lie within±7% error error lines when
t = 1 and within ±5% error lines when t = 5 and 10.

Effect of Number of Instances: To study the effect of the
number of instances on the accuracy of IoTm, we performed
9 more simulations by varying the number of flows from 10
to 50 in steps of 5, and using n = 20, m = 5, and t =
10. In any simulation with i flows (where i = 5j and j ∈
[2, 10]), we randomly selected the i flows out of our 50 flows.
Figure 11 plots the average relative error in the estimates of
the RTTs of the i flows averaged over 100 runs of simulation

with i flows. We observe from this figure that, as the number
of flows increase, the error slowly increases. This happens
because with increase in the number of flows, more and more
processes start sharing the same bucket, which increases the
amount of noise in each bucket and thus increases the error
in estimates. Nonetheless, the error is still small. This slight
loss in accuracy brings significant reduction in the memory
requirements compared to the naive approach, as we describe
next.

Memory: The memory required by our data structure
for measuring average RTT is four times of that required for
measuring the number of disk IOs because average RTTs need
bucket epoch Cs in addition to bucket epoch Bs and the size of
each bucket is twice the size of each bucket used for disk IOs.
Nonetheless, any low end IoT nodes can still easily implement
our INU and the data structure for measuring latencies. Note
that if one were to use the naive approach of maintaining a
unique counter for each flow, as discussed in Section II-B, one
would need 50× 2 32-bit counters for the 50 flows compared
to just 20× 2 32-bit buckets used by our data structure. Thus,
among the other advantages mentioned in Section II-B of
using our data structure instead of the naive approach, in this
particular example, our data structure requires 2.5 times less
memory compared to the naive approach. The saving in the
memory increases further with the increase in the number of
instances, which makes our data structure a lot more scalable
compared to the naive approach.

V. RELATED WORK

While the problem of measuring IoT performance metrics
has largely been unexplored, work has been done on measuring
performance metrics in conventional networks and systems.
Next, we first describe a relevant class of data structures, called
sketches, which are frequently used to store performance
metrics in conventional networks and systems. After that, we
describe a recently proposed framework, namely Trumpet [12],
designed for fine-grained network monitoring in data centers.
Last, we present some representative prior work on measuring
performance metrics in conventional networks.

A. Sketches

Count-Min (CM) sketch is the most relevant data structure
that can be used to store and estimate the sums and counts
of various performance metrics [15]. It has been extensively
used in conventional networks and systems [16], [17]. Several
other variants of CM-sketch also exist, such as Count sketch
[18], conservative update sketch [19], and CM-log-sketch [20].

CM-sketch falls short from two perspectives when mea-
suring IoT performance metrics. First, it requires d hash
computations and d memory updates per insertion, which
can be too much work for resource constrained IoT nodes.
In comparison, our data structure requires just a single hash
computation and memory update per insertion. Second, CM-
sketch achieves similar error bound as our proposed data
structure only if we use a dedicated sketch for each instance.
Lets demonstrate this using the number of disk IOs as example.
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Fig. 10. Actual average RTT per flow vs. estimated average RTT per flow
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Fig. 11. Effect of the number of
instances on average relative error

Let sp represent the number of disk IOs of a process with
ID p and let there be N processes in total whose number of
disk IOs need to be recorded. We can use a CM-sketch to
store the number of disk IOs and obtain the estimate s̃p of the
number of disk IOs of any process with ID p, as per the method
described in [15]. The estimate s̃p obtained through CM-sketch
satisfies the condition s̃p ≤ sp+ ε×

∑N

j=1 sp with probability
ξ [15]. In comparison, the estimate s̃p obtained through our
data structure satisfies the condition s̃p ≤ sp + ε × sp with
probability ξ. To achieve similar error bound using CM-sketch,
we need to ensure that

∑
∀j sp ≤ sp, which is possible only

if we do not add the number of disk IOs of any process other
than p to the CM-sketch. Thus, we need a CM-sketch for each
process, leading to prohibitively large memory requirements
that the resource constrained IoT nodes cannot provision.

B. Data Center Monitoring Framework

Trumpet is a framework similar to IoTm in spirit, but
designed for measuring performance metrics and detecting
events of interest in data centers [12]. It leverages abundance
of compute & memory resources and programmability at end
hosts to monitor every packet and to report events. Trumpet
detects events of interest using triggers at end hosts. It evalu-
ates triggers by inspecting packets at full line rate and reports
events to a controller. The fundamental difference between
Trumpet and IoTm is that Trumpet assumes abundance of
compute & memory resources and remote programmability at
end host, whereas IoTm assumes neither. To avoid requiring
abundance of compute & memory resources, IoTm delegates
decision making about the metrics to monitor and the nodes
on which to monitor them to the control unit in CQU. To avoid
requiring remote programmability at IoT nodes, IoTm employs
a generic data structure in INU that can record measurements
for a variety of metrics. Thus, IoTm is well suited for IoT
implementations while Trumpet is well suited for data centers.

C. Other Measurement Schemes

Due to space limitation, we summarize the existing work
only on the measurement of one QoS metrics, namely latency,
for conventional networks and describe how existing work is
infeasible for measuring IoT metrics. Existing schemes for
almost all QoS & RU metrics can be broadly divided into two
categories: active and passive. Active measurement schemes
rely on performing active operations, such as injecting probe
packets, to measure the performance metrics. Such schemes
are usually easy to implement, but can alter the true value

of the metrics due to active operations. Passive schemes do
away with active operations but require more computational
and memory resources to measure the performance metric.

Active Latency Measurement Schemes: Lee et al. pro-
posed MAPLE, a scheme to efficiently store latencies of
packets [4]. MAPLE attaches time stamp to each packet at the
sender and the receiver calculates the latencies by subtracting
the attached time stamp from its current time. Attaching time
stamps is the key limitation of MAPLE because it not only
requires modifications to standardized packet header formats
and data forwarding paths of existing routers and middleboxes
but also puts additional work on resource constrained IoT
nodes. Furthermore, attaching time stamps can consume up to
10% of the bandwidth [21]. Lee et al. proposed RLI, which
measures latency of any given flow by inserting time stamped
probe packets into the flow [22]. To calculate the latency of
the regular packets between two probe packets, RLI applies
straight line interpolation. Inserting probe packets is the key
limitation of RLI because for fine-grained measurement, the
number of probe packets is large and the latency measured
with a large number of probe packets significantly deviates
from the real latency. The bandwidth that such probe packets
waste can actually be utilized for in-band transportation of the
measurement data collected by the IoT nodes.

Passive Latency Measurement Schemes: LDA provides
passive but aggregate latency measurement between a sender
and a receiver [21]. As it does not provide fine-grained latency
measurements, it cannot be used to understand the causes of
sudden and short-lived deteriorations in the performance of
IoT networks. In LDA, both the sender and the receiver main-
tain a counter vector where each element is a pair of counters:
time stamp counter for accumulating packet time stamps and
packet counter for counting the number of arriving/departing
packets. For each arriving or departing packet, LDA randomly
maps the packet to a counter pair in the counter vector and
adds the time stamp of the packet to the time stamp counter
and increments the packet counter by one. To obtain the
aggregate latency estimate, for each counter pair, LDA checks
whether they have the same packet counter value and selects
all counter pairs that have the same packet counter value for
both the sender and receiver. Finally, LDA obtains aggregate
average latency by subtracting the sum of time stamps at the
sender side from that at the receiver side and divides it with
the total number of successfully delivered packets.
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VI. CONCLUSION

The key contribution of this paper is in proposing IoTm,
a framework for measuring IoT performance metrics, and
demonstrating its use and accuracy by applying it to measure
various IoT performance metrics. The key technical depth of
this paper is in the design and analysis of our generic data
structure as well as the estimation theory that enables the
query processing engines to accurately estimate the values
of the desired metrics. IoTm is lightweight in terms of both
computational resources and physical memory. It requires just
a single hash computation and memory update per measure-
ment and only a few tens of bytes of memory to store several
minutes worth of measurements. This makes IoTm amenable
for implementation on resource constrained IoT nodes. Our
experimental results showed that our framework can achieve
high accuracy (over 95%) in estimating a variety of IoT
performance metrics. In future, we plan to develop theoretical
models to calculate the optimal values of the parameters of
data structure used in IoTm.
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