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Abstract—Recently, we have seen the unprecedented develop-
ment in unmanned aerial vehicles (UAVs) from different aspects.
Accordingly, an increasing number of applications have emerged
based on UAVs. Among which, placing UAVs as Aerial Base
Stations (ABSs) has received considerable interest in both the
industrial and academic community. Existing solutions focus
on the optimization of the UAV deployment problem for static
user topology using the control information obtained from the
Terrestrial Base Station (TBS), that makes hard for the controller
to make real-time decisions. To break this stalemate, we propose
a SemI-DistributEd system, named SIDE, for the UAV self-
deployment. In SIDE, we introduce a mechanical equilibrium
based approach, named EMech, via which the UAV positions are
self-adapted according to users’ attraction (e.g., user distance and
traffic demand) within their transmission range. To facilitate the
EMech, we propose a fine-grained area splitting strategy, termed
KDivision, that partitions the service area in accordance with
the user density. Finally, an area merging technique, namely
RMerge, is exploited to approximately optimize the positions of
the UAVs assisted by an Utility Function that strikes a balance
amid the network performance and economic cost. We conduct
field experiments to validate the feasibility of EMech. Extensive
simulation results show that the proposed SIDE finds the optimal
number of assigned UAVs, which not only reduces the cost of the
system significantly, but also improves the achievable rate up to
74.6% compared to the existing solutions while consuming almost
the same energy level.

I. INTRODUCTION

Placing Unmanned Aerial Vehicles (UAVs) as Aerial Base

Stations (ABSs), to enhance the coverage and throughput of

wireless networks, has received increasing attention from both

the industrial and academic community, particularly in critical

scenarios like temporary hotspots and disaster situations [1]–

[5]. For instance, in sport events or concerts, Terrestrial Base

Stations (TBSs) might fail to provide the desired performance

due to the flash crowd traffic, and it is not feasible to invest a

huge level of currency for an infrastructure that will provide

revenue for a relatively short period of time. A promising

solution is to assist the cellular network via UAVs. UAVs

have the merits of flexibility and economy, that make them

especially suitable for temporarily increasing traffic demand.

Moreover, UAVs have higher possibility of line-of-sight (LOS)

links with users because of their flying characteristics, which

provide better link quality for the communication.

With such promising features, the deployment of UAVs for

the improvement of throughput in cellular networks has widely

been studied. The works [6]–[8] offered several methods to

position one UAV for maximizing coverage or throughput.

Fig. 1. The key insight of SIDE is to envision UAV deployment as a
mechanical equilibrium problem.

Some researchers [9]–[13] attempted to study the multi-UAV

deployment problem. Especially, Sharma et al. [10] utilized the

priority dominance and entropy concept in order to allocate

UAVs over a region. However, it mainly mapped the UAVs

to sub-areas instead of determining their accurate position-

s. Mozaffari et al. [12] exploited the constrained K-means

method which clustered the IoT devices in an iterative manner

and put each UAV at the centroid of each cluster [14]. The

limitation of this work is that the resultant minimum and

maximum size of the clusters are highly uneven, which might

lead to the wastage of resources in the system.

Despite that existing works have made significant progress

on the UAV deployment problem to assist the cellular network,

there are still two vital limitations. 1) Static user topology:

Since static user deployment is a fundamental assumption of

the previous works in [8], [9], [11], [14], it might lead to

the over-provisioning of UAV resources. For example, in a

sudden gathering or disaster scenario, if we apply the existing

approaches to support the mobile users, an UAV remain

underutilized when the highly mobile users move out of their

coverage. 2) Centralized controller: Most works [10], [12],

[14], [15] suppose that there is a centralized virtual controller

that takes care of the entire decision making task. When the

user topology changes gradually, the virtual controller requires

re-clustering of the users. It might incur huge computational

cost and difficulties for the controller to make real-time

decisions. Therefore, utilizing the UAV resources efficiently to

benefit the network performance, especially under a dynamic

user topology, turns out to be a crucial problem.

To cope with the aforementioned limitations, in this paper,

we introduce SIDE, a novel SemI-DistributEd system for the
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UAV self-deployment problem. Unlike the existing systems

that deploy UAVs under the assumption of static user topology

using the control information from the TBS, SIDE adopts

a mechanical equilibrium based approach, termed EMech,

which enables the deployed UAVs to find their positions in

an autonomous manner. It is not only utilized for static user

topology but also adaptive to the variation of dynamic user

typologies. As illustrated in Fig. 1, the key insight is that if

we envision a user as a stationary electron in physics and an

UAV as a mobile proton, the virtual force between the UAV

and the user should be proportional to the user demand and

inversely proportional to the SINR. It is similar to the effect of

the signed magnitudes and the distance between two charged

particles in Coulomb’s law [16]. Therefore, if we put an UAV

randomly in a region, it is bound to move because of the net

force from the users until it reaches the equilibrium state.

Though the basic idea sounds straightforward, it is non-

trivial to realize SIDE due to the following two challenges.

1) Challenge 1: one important step in EMech is to find

the initial position of an UAV. However, due to the mutual

influence among different deployment positions, it is tough for

multiple UAVs to find their initial positions within the whole

demand area at the same time. To deal with this problem, we

propose a kd-tree based splitting method, namely KDivision,

to partition the demand area into sub-areas, which ensures

the number of assigned UAVs in each sub-area based on its

size. Thereupon, an UAV can find its initial position as a

local optimal solution in each sub-area. In order to obtain a

globally optimal solution for the original deployment problem,

we further propose RMerge, to merge the resultant sub-areas

back to the demand area. During RMerge, the operations, e.g.,

addition, removal and relocation of UAVs, are carried out to

maximize the overall achievable rate.

2) Challenge 2: seldom work has paid attention to number

of assignable UAVs and assumed that this number is fixed.

However, in practice, the number of required UAVs is usually

unknown in advance as it is related to the user distribution. To

address this challenge, we propose an Utility Function assisted

heuristic algorithm, which strikes a balance between network

performance and economic cost. It is used as a criterion to

judge whether an operation, such as addition or removal of

UAVs, would lead to a better performance. In this way, the

number of deployed UAV is adjustable to the user distribution.

Through theoretical and experimental analysis, we verify

the feasibility of EMech comparing with the existing work in

[12]. We further conduct extensive simulations to validate the

performance of our proposed method. The results demonstrate

that the average achievable rate outperforms other state-of-the-

art solutions [9] and [12] by 37.1% and 32.2% in the evenly

distributed user topology, and by 74.6% and 73.1% in the

cluster based user topology. On the other hand, the total energy

consumption is almost the same or much less. The results

reveal that SIDE provides a more flexible and efficient semi-

distributed self-deployment algorithm for the self-adaptive

UAV deployment problem. Overall, the contributions of this

work can be summarized as follows.

Fig. 2. A sample scenario of SIDE: UAV-assisted celluar network to alleviate
the erratic supply-demand mismatch.

• We are the first one in the literature to transform the UAV

deployment problem to a mechanical equilibrium prob-

lem. The proposed self-deployment algorithm EMech is

not only suitable for a static user topology but also

adaptive with the variation of dynamic user topology.

From the resultant outcome of EMech, the position of an

UAV is self-adapted based on the user attractions (e.g.,

SINR and traffic demand ).

• We propose a fine-grained area splitting strategy, KDivi-

sion, and a novel merging technique, Rmerge, to obtain

globally optimal UAV positions. We further formulate the

UAV deployment problem as an optimization problem to

strike a balance amid the total UAV deployment cost and

network performance.

• Through a field-level experiment, we verify the feasibility

of EMech. Extensive simulation results show that the pro-

posed approach improves the overall rate of the system at

most by 73.1% compared to the state-of-the-art solutions.

II. SYSTEM OVERVIEW

Consider a scenario where flash crowds cause overloading

at the TBS in LTE networks. If the number of users is

constantly increasing, the demand will be more pressing. In

this case, an ABS is an appealing solution to alleviate the

erratic supply-demand mismatch in the hotspot area efficiently

and economically. As shown in Fig. 2, an UAV is equipped

with a cellular backhaul (LTE) that is connected to the TBS

in its neighboring area, and then also builds an LTE network

to the users within its transmission range. We suppose that

the bandwidth resources are abundant in neighboring areas

and non-overlapping bandwidth is allocated to each UAV. The

users that are uncovered by any UAV obtain service from

the nearby TBS directly. We assume that all the UAVs are

equipped with sensing, communication, mobility and compu-

tational capability features. Computational ability for an UAV

is required as it requires to support a distributed deployment

algorithm. As the number of UAVs and their corresponding

positions influence the performance of the entire network, in

this paper, we introduce SIDE to find the number of required

UAVs and their corresponding positions in order to benefit the

network in the best possible manner.
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Fig. 3. The flowchart of SIDE.

SIDE is a semi-distributed mechanical equilibrium based

system that enables the UAVs to organize themselves in an

adaptive manner according to the attraction of the users, which

consists of SINR and traffic demand. It is not only suitable

for static user topology but also adaptive with the variation of

dynamic user typologies. Fig. 3 illustrates the framework of

SIDE. At the beginning, the TBS collects information about

the number of users within its service area and their corre-

sponding locations via GPS periodically. Once the entire user

information is gathered, the TBS executes SIDE automatically.

SIDE formulates the deployment problem of the UAVs as an

optimization problem. However, since the problem is NP-hard,

it is challenging to find the optimal solution in reasonable time.

Consequently, from the insights of the optimal solution, we

design an incremental self-deployment algorithmic framework

based on the concept of a designed Utility Function, which

enables the UAVs to locate themselves autonomously and

independently to assist the cellular network in a hotspot

area. The algorithmic framework consists of the following

components.

• KDivision: Instead of dividing the hotspot area into fix-

sized blocks, the TBS adopts a fine-grained area splitting

strategy termed KDivision. It partitions the demand area

into several sub-areas with heterogeneous-size such that

the number of users in each sub-area satisfies the capacity

constraint of the designated UAV.

• EMech: Rather than putting an UAV at the centroid

of a user cluster, we exploit a distributed mechanical

equilibrium based algorithm for an UAV to find its

position autonomously. The initial position of an UAV is

above the region that has a maximum number of users.

Then, it moves due to the net attraction from the users in

that sub-area until reaching the equilibrium state. In this

way, the position of an UAV is not only determined by the

locations of the users, but also influenced by fluctuating

link quality and traffic demand.

• RMerge: As KDivision splits the high demand area

into several heterogeneous sub-areas, the position of an

UAV is only determined by the users within each sub-

area. Consequently, RMerge is employed to combine the

solutions of all sub-areas to a complete fine-tuned one

of the original deployment problem. As the steps of

this technique, the operations, e.g., addition, removal and

relocation of UAVs, are taken out based on the outcome

of the Utility Function while targeting on the maximiza-

tion of the network performance and the minimization of

economic cost.

• Once the initial deployment positions are determined, the

UAVs periodically collect information about the users

within their transmission range, such as SINR and user

traffic demand, and then calculate the net attraction of

each user. When the equilibrium state is broken, the

corresponding UAV decides its movement via EMech

repeatedly until it finds another equilibrium point again.

III. PROBLEM FORMULATION

Suppose there is a set of M ground users, which is de-

noted by G = {g1, g2, ..., gM}, and are distributed randomly

within the boundary of high demand area. The coordinate

of user gj is represented as (xgj , ygj ). In this scenario, a

set K = {u1, u2, ..., uK} of K UAVs are deployed to assist

the overloaded TBS by providing communication service for

congested ground users effectively. Each UAV can handle up

to X users at one time. We use (xui
, yui

, hui
) to denote the

location of UAV ui. The researchers in [17] have already

calculated the optimal altitude of an UAV for the maximum

coverage in urban environments, and we suppose that the

altitude for each UAV in this paper is optimal and fixed.

Therefore, we denote the coordinate of UAV ui (xui
, yui

, hui
)

as (xui
, yui

) throughout the rest of the paper [18].

The transmission range of each UAV is assumed to be

ideal, which means that the coverage area has a circular shape

without any irregularity. According to [19], user gj is said to

be served by UAV ui if the distance between them is shorter

or equal to the maximum transmission range Rmax. Iui
is

denoted as the set of users covered by UAV ui.

According to Shannon’s capacity formula, the achievable

rate of user gj at location (xgj , ygj ) associated with UAV ui

can be expressed as

Rui(xgj , ygj ) = Wui log2(1 +
Pui

/Lui
(xgj , ygj )

N0
), (1)

where Wui and Pui denote the transmission bandwidth and

transmission power of UAV ui, respectively. Lui
(xgj , ygj )

represents the average path loss between UAV ui and user

gj which is calculated according to the air-to-ground chan-

nel model in [17] and N0 is the noise power. Moreover,

Wui
=

Bui

|Iui
| , where Bui

is the assigned bandwidth to UAV

ui. Consequently, it is easy to derive the rate of UAV ui as

Rui
=

∑|Iui
|

j=1 Rui
(xgj , ygj ).

In this setting, we denote the sum of achievable

rate of all the user-UAV and user-TBS pairs referred

as Global Rate, which is Rw(K) =
∑K

i=1 Rui +∑G−∑K
j=1 |Iui

|
i=1 RTBS(xgj , ygj ), where RTBS is calculated

according to the Hata Model [20]. Furthermore, contrary to the

Global Rate, the more the UAVs we deploy, the more expense

we require to endure. To capture the cost of our deployment

problem, we define a Cost Function Cost(K) = ζ×K, which

is a function of K and the per UAV cost ζ.
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Based on the Global Rate and the Cost Function, we define a

Utility Function to explore the performance maximization and

cost minimization aspects of the UAV deployment problem,

which can be stated as Assign(K) = Rw(K)− Cost(K). In

this paper, our goal is to find the optimal number of UAVs

in set K for the purpose of deployment and their positions so

that the Utility Function is maximized.

The problem described herein is NP-hard, which can be

proved by a reduction procedure. We set Cost(K) = 0,

G =
∑K

j=1 Iui , Bui = 1, Pui = N0, Lui(xgj , ygj ) = dαij .

Consequently, we can rewrite the aforementioned problem as

an optimization problem, which is as follows.

max

K∑
i=1

|Iui
|∑

j=1

log2(1 +
1

dαij
)

1
|Iui

|

s.t.
K∑
i=1

|Iui
| = M

|Iui | ∈ Z+

dij ∈ R+

α ∈ [2, 4],

(2)

which is proved to be an mixed integer non-linear program-

ming (MINLP) problem, and hence NP-hard. Especially for

this problem, it is challenging to find the optimal solution due

to the mutual dependency among (xu1
, yu1

), . . . , (xuK
, yuK

).
Therefore, we propose an Utility Function assisted heuristic

solution for the UAV deployment problem in the next section.

IV. MECHANICAL EQUILIBRIUM BASED UAV

DEPLOYMENT

The formulated problem in the previous section is in-

tractable as it is an NP-hard problem. Consequently, we devise

an Utility Function assisted heuristic solution in this section.

We first partition the demand area into several heterogeneous-

sized sub-areas using the proposed method KDivision such

that the number of users in each sub-area satisfies the capacity

of an UAV. Then, we proposed a mechanical equilibrium based

solution, named EMech, that enables the deployed UAVs to

find their positions in an autonomous manner within their sub-

areas. Afterwards, a novel area merging technique, RMerge,

is designed to combine the local optimal solutions to obtain

an optimal global one that can benefit the network in terms of

both the overall rate and the deployment cost.

A. Dividing Demand Area - KDivision

In previous works [9], [10], the authors introduced the zone
guider lines concept that divides the traditional hexagonal cell

into a set of small independent regular areas, and map the

UAVs to the desired areas. Due to the random user distribution,

the resultant number of users in each small area is uneven, so

that this dividing method might degrade the utilization of UAV

resources. It is therefore attractive to consider a fine-grained

(a) The First Cut (b) The Second Cut (c) The Third Cut

(d) The Fourth Cut (e) The Fifth Cut (f) The Sixth Cut

Fig. 4. A sample illustrations of the KDivision method.

area division strategy that the number of users in each sub-

area satisfies the capacity constraint of an UAV to exploit the

resources of the UAVs in an optimal manner.

Inspired by the way of constructing a kd-tree that always

divides the space from the longest dimension, we exploit the

KDivision method to partition the demand area which always

splits the parent area into two sub-areas along the longest edge.

For example, as shown in Fig. 4, suppose that the number

of users in a given area has already exceeded the capacity

constraint of the designated UAV, we partition the parent area

into two sub-areas in a vertical manner. Then, if the number of

users in one of the sub-areas still exceeds the UAV capacity,

we will divide it into two parts in a horizontal manner. This

partitioning processes is recursively repeated on each sub-area

until the number of users in each sub-area fulfills the capacity

constraint of the designated UAVs. In a nutshell, as we can see

in Fig. 4, odd cuts are made via solid lines, whereas the even

cuts are made via dotted lines. Through this strategy, we find

that each sub-area contains roughly the same number of users,

which means if the users in one sub-area is denser than that

of other sub-areas, the area of this sub-area would be smaller.

This interesting property provides the possibility of improving

the utilization of an UAV in the deployment problem in which

users are distributed in a non-uniform manner.

B. Finding the Optimal Location of an UAV - EMech

Mozaffari et. al. [12] exploited a constrained K-means clus-

tering approach to optimally cluster the IoT devices and they

also proved that the optimal location of an UAV corresponds

to the centroid of the demand area. However, deploying UAVs

at the center of formed clusters has its own limitations, which

are listed as follows.

• First, it only considers the distance between a user and an

UAV, which might be impractical since the attenuation of

a signal is not simply determined by the distance but also
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influenced by the multi-path propagation, referred to as

shadowing from obstacles particularly in urban scenarios.

• Second, the user topology changes gradually, and the

virtual controller needs to re-cluster the users once the

user topology changes. It might incur huge computational

overhead and difficulties for the controller to make real-

time decisions.

As a result, applying the existing approaches in practice might

affect network performance negatively. Consequently, it is

necessary to develop a distributed algorithm by which the

UAVs can relocate themselves autonomously as required when

the location of users and their availability change dynamically.

This algorithm is motivated by the Mechanical Equilibri-
um concept in which a particle is in static equilibrium if the

net force on that particle is zero. As we all know, the force

between two particles is proportional to their magnitude and

inversely proportional to their distance. While deploying an

UAV to provide communication provision for the ground users,

we observe a similar phenomenon. The users, that suffer worse

link quality or have higher traffic demand, have tendency to

attract the UAV to become closer for reducing the attenuation

of signal. We envision a user as a stationary electron in Physics

and an UAV as a mobile proton. The force between the user

and the UAV is proportional to traffic demand and inversely

proportional to the SINR, which is similar to the effect of the

signed magnitudes and distance on the physical force [16].

The equilibrium position of the UAV is closer to those users

that suffer fluctuating link quality or have pressing traffic in

order to achieve higher network performance. Therefore, if we

put an UAV in an area randomly, the UAV would adjust its

position autonomously from the initial location until it reaches

the equilibrium state according to the net force from the users.

In order to achieve the desired objective, we introduce the

concept of attraction of UAV ui from user gj to define the

movement of the UAVs during the deployment process. It is

calculated as

Fgj−>ui
= ka

rgjrui

SINR2
gj−>ui

, (3)

where rgj denotes the traffic demand of user gj , ka is the

attraction coefficient and the default value of rui
is 1. Different

from the Coulombs law [16], this attraction is dependent on the

SINR and traffic demand. The attraction satisfies the following

conditions:

• Inverse Relation: The attraction is inversely proportional

to the SINR, which means the attraction from the users

that suffer worse link quality is greater than that have

better channel quality.

• Positive Correlation: The attraction is proportional to the

traffic demand, which means that the attraction from the

users that have more pressing traffic demand is greater

than that with relatively small traffic requirements.

We design an algorithm that begins with the specification

of traffic demand (rgj ) and the initial location (xgj , ygj ) of

the users. An UAV can sense the users within its transmission

Fig. 5. A sample trace of finding the positions of an UAV.

range and obtain their instantaneous locations (xgj , ygj ) via

GPS. Moreover, when the active users send service request

messages to an UAV, it can acquire their traffic demand (rgj )

and can calculate the instantaneous SINR (SINRgj−>ui
)

through the measurement of the signal quality.

First, we suppose that an UAV is added and its initial

location is in a region that has a maximum number of users.

Then, according to the virtual attraction imposed on the UAV

from the users at the current location, the UAV decides its next

movement in an autonomous manner. After moving to a new

position, the net attraction to the UAV from the users changes

in accordance with the distance and availability of the users,

which drives the UAV to move again. This process is repeated

until an equilibrium state is reached where a particle has zero

velocity. In this paper, we assume that when the movement of

an UAV is less than a certain predefined threshold, the static

equilibrium for that UAV is achieved.

In the final step of the algorithm, we apply the outcome of

the Utility Function to judge whether we should put an UAV

in this area. If the value of the Utility Function is larger, we

add the corresponding UAV to the area, otherwise not.

In order to illustrate the equilibrium point finding mecha-

nism (i.e., EMech) of an UAV, we plot Figure 5 that shows

a sample trajectory of an UAV in the process of finding its

optimal position from its initial point. In this figure, 10 users

are non-uniformly distributed and they are marked by black

dots. Each UAV chooses its initial position randomly that is

denoted by a blue dot. The movement of the UAV is decided

by the net force from the users and the temporary stops are

indicated by the stars. The process is repeated until it reaches

the equilibrium state and the final position is specified by a

red dot.

It can be easily proved that our proposed solution is

equivalent to the traditional K-means based methods [12],

[14]. If we only take the distance of the users to the UAV

into account, the outcome of our solution approach would

be as same as that of the K-means based methods. As

shown by the relation in (3), the force can be written as

Fgj−>ui
∝ 1

SINR2
gj−>ui

. Since SINRgj−>ui
∝ 1

dij
, we have

Fgj−>ui
∝ d2ij . Consequently, we need to prove that the

force equilibrium point is the centroid. Let a list of planar

points A1 = (x1, y1), A2 = (x2, y2), . . . , An = (xn, yn).
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Hence, in the k-means method, we need to find a point

P = (x, y) which satisfies min
∑n

i=1(x−xi)
2+(y−y2). We

can rewrite the minimization problem further as minn(x −
x1+x2+...+xn

n )2 + n(y − y1+y2+...+yn

n )2 + K. The optimal

outcome of this minimization problem is the centroid, i.e.,

x = x1+x2+...+xn

n , y = y1+y2+...+yn

n . In our solution, the

force equilibrium point P ′ = (x′, y′) satisfies the following

two equations.{
(x1 − x′) + (x2 − x′) + . . .+ (xn − x′) = 0.

(y1 − y′) + (y2 − y′) + . . .+ (yn − y′) = 0.

Hence, we also have x′ = x1+x2+...+xn

n , y′ = y1+y2+...+yn

n ,

which implies that P = P ′. Thus, the proof is completed.

Therefore, our proposed method EMech is suitable for a

more complex scenario as it not only considers the distance

but also the attenuation of a signal and user demand. More

importantly, EMech is a distributed algorithm by which an

UAV can adjust its location in an autonomous manner accord-

ing to the SINR and the demand of the users even in a mobile

network. The detailed procedure to deploy an UAV in a certain

area is summarized in Algorithm 1.

C. Utility Function assisted Merging Technique - RMerge

Poineer work [9], [10] proposed the area splitting scheme in

order to simplify the problem of mapping high-demand sub-

areas with UAVs. As the splitting strategy partitions the whole

area into several sub-areas, the position of an assigned UAV

is only determined by users within the corresponding sub-

area, which is a local optimum solution. However, the globally

optimal location of an UAV might also be affected by the users

in the edges of neighboring sub-areas. In order to optimize

the solution, we obey an inverse version of the KDivision

method, termed RMerge, which is devised to combine local

solutions to obtain a global solution of the original deployment

problem. For each pair of two blocks, it falls under each of

three conditions: 1) neither block A nor block B has any UAV
2) either block A or block B has at least one UAV 3) both block
A and B have at least one UAV. In these cases, the operations,

e.g., addition, removal and relocation of UAVs, are carried out

to maximize the network performance.

When two blocks are merged to a new one, actions are likely

to be taken out in the bounding area to optimize the solution.

For example, If the coverage area of an UAV is out of one

block, this UAV might adjust its location due to the users in

the edge of the other block. For convenience, we introduce

Border Area which is formed by moving the boundary line of

two blocks towards both sides by a distance of Rmax.

1) Neither Block A nor Block B has any UAV: It is the

simplest condition in the RMerge method. This problem can

be transformed to find the location of an UAV within Border
Area after combining two blocks into a new one. EMech (i.e.,

Algorithm. 1) can be adopted to solve this problem.

2) Either Block A or Block B has at least one UAV :
We first need to check whether the addition of a new UAV

unew leads to better performance, as illustrated in Fig. 6(b).

Algorithm 1: The deatiled steps for the initial placement

of an UAV - EMech.
Input: A sub-area Ac that is generated by

the KDivision method, and the set of
user locations within sub-area Ac is
L.

Output: The sub-area A′
c after deploying an

UAV.

1 Calculate the Utility Function when no UAV
is added:
R1 = Rw(∅)− Cost(0) =

∑|IAc |
i=1 RTBS(xgi , ygi).

2 Suppose UAV u is added, and choose the
initial location l ∈ L which has the maximum
number of users within the Rmax range.

3 ForceMove(Ac, {u}).
4 /∗ after ForceMove, UAV u is at the new
location l′ ∗ /

5 R2 = Rw(u)− Cost(1).
6 if (R2 > R1) then
7 Add UAV u to sub-area Ac and return the

resultant sub-area A′
c.

8 else
9 No UAV is added and return the original

sub-area Ac.

10 Procedure ForceMove(Ac, U)
11 while true do
12 Forceflag ← 0
13 foreach ui ∈ U do
14 /∗ maybe more than one UAV in sub-area

Ac. ∗ /
F ← CombinedForce(IAc −

∑j=|U|
j=0,j �=i Iuj ).

15 Forceflag ← Forceflag + F.
16 ui moves d units which is calculated

according to the combined force F.

17 Find the radius and height of each UAV
ui ∈ U that satisfies the following
constraints:

1) radius rui ≤ Rmax

2) |Iui | ≤ X

if Forceflag ≤ ε then
break.

UAV

Users

Border Area

(a) Initial State

UAV

Users

Border Area

(b) Addition of a New UAV

Fig. 6. A sample illustration of the merging process.

We can take the help of Algorithm. 1 to find the position of

UAV unew in the Border Area. If the performance is enhanced,

the corresponding UAV set will be updated, otherwise unew

will not be added. Then, the UAVs in the Border Area are

influenced by the users at the edge of the other sub-areas, and

hence re-adjust their positions in the new combined block in

an autonomous manner.
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UAV

Users

Border Area

(a) Two Close UAVs

UAV

Users

Border Area

(b) The Removal of One of the Two UAVs

Fig. 7. Another sample illustration of the merging process.

TABLE I
PARAMETER CONFIGURATIONS

Parameter Value Description
A 10000*10000 Simulation Area
M 1200-2000 Number of Users
X 200 Maximum Number of Users Handled by one UAV
Rmax 2000 m [17] Maximum Radio Range of an UAV
hmin 2100 m [17] Minimum Altitude of an UAV
N0 -173dBm/Hz Noise
α 4 Path Loss Exponent
C 9.6 [17] Environment dependent Constant
D 0.28 [17] Environment dependent Constant
η 100 [17] An Additional Attenuation Factor

due to the NLOS Signal
fc 2GHz Carrier Frequency
WBS 100 MHz BS Bandwidth
PBS 43 dBm BS Transmit Power
WUAV 20 MHz UAV Bandwidth
PUAV 23 dBm UAV Transmit Power

3) Both Block A and Block B have at least one UAV: This

case is more complicated, and more actions, e.g., addition and

removal, need to be considered. There are three possible sub-

cases of this case, which are described as follows. First, if

there are two UAVs extremely close within the Border Area,

i.e., the distance between them is less than Rmax, as illustrated

in Fig. 7(a), we might consider whether we can remove one

of them for saving economic cost. The initial position of the

other UAV is within the shadowed rectangular area shown in

Fig. 7(a). This action is accepted if and only if the resultant

value of the Utility Function increases by this. Second, new

UAVs are considered to be assigned within the Border Area,

which is similar to the first case. Thirdly, the positions of the

UAVs adjust according to the change of user availability in

the new block, which is explained in the second case.

V. PERFORMANCE EVALUATION

In this section, we conduct field experiments to validate the

feasibility of EMech and simulations to verify the performance

of SIDE by comparing it with other two works [9], [12] in

terms of overall rate, the number of covered users, total energy
consumption and the value of the Utility Function.

A. Evaluation Setup

We first conduct a field-level experiment to verify the

feasibility of EMech. As shown in Fig.13, our testbed consists

of three Android devices and an access point (AP). The

positions of three devices form an isosceles right triangle. We

compare the position of the AP calculated via EMech with

that by the method in [12].

ssssss

(a) Scenario 1

V

(b) Scenario 2

Fig. 8. The locations of UAVs in different scenarios: a) evenly distributed
topology b) cluster based topology.

Then, extensive simulations are conducted to validate the

performance of SIDE. The demand area is of 10000× 10000
m2, and different number of users ranging from 1200 to 2000
are non-uniformly distributed in this area. As shown in Fig. 8,

user topology is categorized into evenly distributed (Scenario

1) and cluster based (Scenario 2) scenarios. We assume that

SIDE operates in urban environments, and thus we choose the

values of the environment dependent attenuation constrants

C,D and η [17] accordingly. Moreover, when it comes to

the value of economic cost ζ of an UAV, it depends on the

intention of the operator. If the service operator wants to

maximize the overall throughput, the value of ζ can be set to

a lower value. On the other hand, if the service operator wants

to reduce the infrastructure related deployment cost, a higher

value of ζ is beneficial. In the simulation, we set the value

of ζ to 3× 107. The detailed simulation parameters are given

in Table I. All our approaches are implemented using Python

language and all the simulations are conducted on an Ubuntu

16.04.1 Linux System with Intel(R) Xeon(R) CPUE5-2620 v3

(2.40 GHz) and 32 GB main memory. In the following, each

data point is the average of 10000 random runs.

B. Experimental Results

In Fig. 13, we show the positions of the AP obtained

by EMech and the method in [12] by red and black dots,

respectively. In this setup, we let a person stand nearby device

1. We observe that if we put the AP at the centroid of the users
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(a) Scenario 1
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(b) Scenario 2

Fig. 9. The achievable rate with the varying number of users.
(a) Scenario 1 (b) Scenario 2

Fig. 10. The number of covered users by the UAVs with the varying number
of users.

(a) Scenario 1 (b) Scenario 2

Fig. 11. Total energy consumption with the varying number of users. (a) Scenario 1 (b) Scenario 2

Fig. 12. The value of the Utility Function with the varying number of users.

Fig. 13. A sample experiment scenario for validating the feasibility of EMech.

as proposed in [12], the standby person blocks the signals, and

hence the received signal power of device 1 results in −47
dBm. However, if we move the AP to the position calculated

by EMech, the received power of device 1 increases to −38
dBm. Although the received power of device 2 and device

3 both decrease to −34 dBm from −30 dBm, the overall

performance is enhanced by our EMech technique.

C. Performance Comparison

1) Performance of KDivision: For M = 1200 in the sys-

tem, Fig. 14 shows that the maximum and minimum number of

users in a sample sub-area is 86 and 3 by the splitting strategy

in [9], respectively, and 190 and 110 via the KDivision method,

respectively. We observe that the number of users in each sub-

area achieved by the KDivision method is approximated by

the capacity of the designated UAV, particularly in Scenario

2. On the other hand, the authors in [9] partitioned the demand

area into a set of small fixed-sized areas without considering

user distributions. However, via the KDivision method, the size

Fig. 14. A sample example of maximum and minimum number of users in
each sub-area.

of each sub-area is flexible and is determined in accordance

with the user densities in order to make sure that the resultant

number of users in all sub-areas are roughly the same.

2) The Locations of UAVs: As an illustrative example,

Fig. 8 shows the locations of the TBS and UAVs as well as the

coverage partitions obtained after applying SIDE. The TBS is

presented by the red triangle and the positions of the UAVs

are denoted by five-pointed stars. Indicated by black dots, the

users are served by the TBS directly while those governed by

the UAVs are marked by blue color. In Fig.8(a), the positions

of the UAVs are (2.719, 7.639), (2.065, 2.57), (7.565, 2.731)
and (7.955, 7.127). On the other hand, in

Fig. 8(b), the coordinates of the five UAVs are

(1.281, 8.869), (1.802, 4.871), (6.422, 1.552), (7.556, 8.681)
and (8.284, 5.993). We observe that the UAVs tend to cover

those users who are far away from the TBS as those users

might suffer worse link quality in both the scenarios, which

could achieve more distinguishable performance.
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3) Effect of Global Rate Rw(K): SIDE outperforms the
algorithm in [12] and [9] by 37.7% and 31.1% in Scenario
1, respectively, and by 79.7% and 77.8% in Scenario 2,
respectively. In Fig. 9, the increment of global rate with the

increasing number of users is a natrual trend. Basically, the

approach proposed in [12] first clustered the IoT devices

and then deployed the UAVs at the center of the formed

clusters, which is the main reason of such serious performance

degradation. Via this approach, the resultant number of users

covered by each UAV is so uneven that the UAV resources are

not properly utilized. Besides, it only considers the distance

between a user and an UAV, which may not be realistic

since the attenuation of a signal is not simply determined by

the distance but also influenced by multi-path propagation,

referred to as shadowing from obstacles.

4) Effect of the total number of users covered by the
UAVs: SIDE outperforms the algorithm in [12] and [9] by
9.8% and 17.5% in Scenario 2, respectively. Fig. 10(a) shows

that the difference of covered users in Scenario 1 is not

so obvious compared with other two approaches due to the

evenly distributed user topology. Whereas, in Fig.10(b), we

observe that more users are covered by the UAVs in SIDE.

The reason is that the authors in [12] proposed a constrained

K-means algorithm to cluster the IoT devices while ignoring

the constraint on the cluster size, which leads to the highly

uneven number of users among the resultant clusters. On the

other hand, in [9], while partitioning the demand area, they

are concerned about the physical size of each sub-area rather

than the number of users in that sub-area. Moreover, they

assume that each sub-area acts independently and each high

demand sub-area can be mapped to one UAV. Therefore, since

the number of users covered by the UAVs is uneven in both

approaches, the UAV capacity is not fully utilized. In contrast,

via SIDE, each sub-area contains roughly the same number

of users and the RMerge technique is exploited to break the

boundary of the sub-areas to cover more users.

5) Effect of the number of users covered by each UAV: In
Fig. 15, we show that the number of users covered by each
UAV via our method is more even compared to that calculated
by [12] and [9]. Therefore, the exploitation of UAV resources

achieved by SIDE is much higher than other two approaches.

The algorithm in [9] divides the traditional hexagonal cell into

a set of small regular independent areas, and the UAVs are

mapped to these areas. On the other hand, the algorithm in

[12] clusters the IoT devices and an UAV is placed at the

centroid of each cluster. Consequently, the number of users

covered by each UAV depends on the number of users in each

area or the cluster size, which results in the uneven number of

users covered by each UAV. As a result, the UAV resources

are not fully utilized by this approach.

6) Effect of Energy Consumption: The total energy con-
sumption achieved by SIDE has close performance to that of
[12] which aims to minimize the energy consumption. In order

to compare the power consumption via SIDE with the work

in [12], we calculate the consumed power of the UAVs using

Eq. 4 of [12] for making sure that the rate of the farthest

Fig. 15. The number of users covered by each UAV (Scenario 2).

user covered by each UAV satisfies the threshold. Although

the algorithm in [12] has lower energy consumption, they

have worse overall performance as shown in the previous

results. This method incurs the lowest energy consumption

since it minimizes the distance between the users and an

UAV in order to reduce the attenuation of signal. Whereas, to

exploit environmental diversity of real scenarios, our scheme

consider the overall SINR and traffic demand of the users,

and consequently achieves slightly higher energy consumption

compared to that in [12].

7) Effect of the Utility Function: The number of assigned
UAVs K achieved by SIDE strikes a balance between the max-
imization of performance and the minimization of overall cost.
Fig. 12 depicts the changing value of the Utility Function with

the increasing value of K when the number of users is 1200.

We observe that the value of the Utility Function increases

first as the number of assigned UAVs increases. However, after

reaching the highest point, we see a sharp decreasing trend due

to the imbalance between the performance and the economic

cost. Therefore, we introduce the concept of Utility Function
to strike a balance amid the UAV deployment cost and network

performance to find the optimal number of deployed UAVs K
instead of deploying a fixed number of UAVs.

VI. RELATED WORK

Numerous approaches have been proposed to solve the

deployment of UAVs in difference scenarios. We primarily

categorize the UAV placement works in terms of the number

of UAVs: i) single UAV and ii) multiple UAVs
Single UAV: Dhekne et al. [6] is the first one to adopt the

ray tracing technology for finding the possible positions of

one UAV. Mozzafari et al. [7] studied the optimal altitude for

one UAV in order to maximize the coverage. The works in [8],

[21] proposed a theoretical method to position one UAV over a

wireless ad hoc network as a relay to enhance the performance.

Lyn et al. [22] maximized the minimum throughput of all

mobile terminals by jointly optimizing the trajectory of the

UAVs, bandwidth allocation and user partitioning.

Multiple UAVs: There are mainly two kinds of methods for

the deployment problem of multiple UAVs: i) partition and ii)

cluster. For the first one, Sharma et al. [9]–[11] proposed a

partitioning scheme that divides the traditional hexagonal cell

into a set of independent standard areas, and map UAVs to
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the desired areas. They introduces several methods to map the

UAVs, such as the method based on the priority dominance and

entropy concept and the neural-based cost function approach.

They not only consider the overall throughput of the system,

but also the delay and coverage. However, the limitation is

that UAVs are just assigned to specific demand areas without

paying much attention to their accurate positions. For the

second one, the work [12], [13] introduced an K-means based

algorithm to cluster the users and then put each UAV at the

centroid of each cluster. The limitation is that they ignored

the constraint on cluster size, which leads to the highly

uneven number of users among the resultant clusters. Since

the number of users covered by the UAVs is uneven, the UAV

capacity is not fully utilized via this approach.

VII. CONCLUSION

We proposed a semi-distributed system, named SIDE, for

the self-deployment of UAVs to offload data traffic of a cellular

network in emergency situations. The key insight of SIDE

is to envision the UAV deployment problem as a mechanical

equilibrium problem, termed EMech, which enables the UAVs

to self-adapt their positions according to user attraction (e.g.,

SINR and traffic demend) within their transmission range. It

is suitable not only for the static user topology but also for

the variation of dynamic user topology. In order to facilitate

EMech, we proposed a fine-grained area splitting scheme,

KDivision, which partitions the demand area into sub-areas

in accordance with the user density while considering the

full utilization of UAV resources. Moreover, a novel area

merging technique, RMerge, was exploited to combine the

resultant sub-solutions for obtaining a complete solution that

strikes a balance between the throughput maximization and

cost minimization aspects of the problem. Numerical results

showed that our splitting scheme KDivision can partition

the high demand area in a more flexible manner and more

users can be covered by the deployed UAVs. Furthermore,

we showed that the proposed approach significantly improves

the network throughput while saving the infrastructure cost

and consuming almost the same energy level compared to the

state-of-the-art solutions. We hope that this paper will lead to

a new practical way to address the hotspot issue.
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